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We show within a quantum-mechanical calculation that in Bechgaard salts the electron transport along the
least conducting c axis is dramatically affected by a magnetic field applied parallel to the intermediate con-
ducting b axis. Above a threshold field, the system undergoes a field-induced dimensional crossover from a
three-dimensional �3D� phase to a two-dimensional phase where the electrons are confined in the most con-
ducting �ab� plane. This leads to a significant change in the temperature dependence of the electron scattering
rate. The latter exhibits strong deviations from the T2 Fermi-liquid �FL� rule, which is only obeyed in the
low-temperature 3D phase where the interplane hopping is coherent. Despite the departure of the scattering rate
from the FL behavior, the transport properties at high temperature are found to be in accordance with FL
predictions. Our results, which correctly account for the c-axis transport measurements in Bechgaard salts,
provide a possible understanding of the striking behavior of the interlayer conductivity in cuprate based
compounds in a parallel magnetic field.
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I. INTRODUCTION

The low dimensional nature of the electronic properties of
the highly anisotropic Bechgaard salts denoted �TMTSF�2X
�X=PF6, ClO4, ReO4. . .� is at the origin of a rich variety of
physical phenomena.1,2 The quasi-one-dimensionality of
these systems is due to the crystal structure consisting of
stacked organic molecules �TMTSF� in the a direction, along
which the highest conductivity takes place. These organic
chains are coupled along the b direction to form conducting
planes, which are weakly coupled along the c axis. The
bandwidths along the crystal axes are ta : tb : tc
=3000:200:10 K. The Fermi surface �FS� is consists of
slightly warped parallel sheets at kx� �kF parallel to the ky
and the kz directions.

These compounds can exhibit a variety of ground states
ranging from spin-density wave �SDW� insulator to a metal-
lic state to a superconducting phase by either changing pres-
sure or the anion X.

Applying a magnetic field perpendicular to the most con-
ducting �ab� plane gives rise to a second-order transition
from the metallic state to a cascade of field-induced SDW
�FISDW� phases, which are one of the substantial phenom-
ena that the growing area of organic quasi-one-dimensional
�Q1D� conductors has produced. The overall features of the
FISDW phases has been explained successfully in the frame-
work of the quantized nesting model �QNM� based on the
idea that—under a magnetic field—nesting properties of the
Fermi surface are improved, which furthers the formation of
the SDW phases.3,4

This field-induced feature has made way for investigating
the dimensionality of the electronic system for different ori-
entations of the magnetic field. Studying the transport prop-
erties has proved to be a reliable tool for such investigations.
In particular, a number of unusual effects are observed �such
as the angular dependent magnetoresistance�, which, in spite
of intensive studies, continues to rise open questions.5–7

Moreover, attractive results have been obtained for the tem-
perature dependence of the c-axis resistance for the field
aligned along the b direction.8–11 This geometry has been
argued to be the best for measuring magnetoresistance ef-
fects in Bechgaard salts.8

It should be noted that the unit cell �a ,b ,c� of Bechgaard
salts is triclinic, but for sake of simplicity, an orthorhombic
�a ,b� ,c�� cell is used where the b� axis is the projection of
the b axis perpendicular to the a direction and c� is normal to
the �ab� plane.

The temperature dependence of the c-axis resistivity �c is
found to be marked by a large magnetoresistance and a pro-
nounced minimum, which moves toward higher temperature
as the magnetic field increases. However, no magnetoresis-
tance has been measured in the transport properties along the
a axis showing a metallic behavior even at high magnetic
field.11,12 This anisotropic behavior between �a and �c rules
out any interpretation in terms of charge localization.10 Ac-
tually, it is the signature of a three-dimensional �3D� to two-
dimensional �2D� crossover induced by the orbital effect of
the field parallel to the b direction �H �b�, which reduces the
effective hopping process tc along the least conducting axis.
Such a crossover is expected when the magnetic energy �c
=evFHc /c0 is of the order of tc. Here e is the unit charge, vF
is the Fermi velocity, c is the interplane distance, and c0 is
the speed of light.

In a semiclassical picture, the reduced dimensionality of
the system in the presence of a magnetic field along the b
direction can be understood as a consequence of the Lorentz
force—which causes the electrons on the Fermi surface to
move in the kz direction according to the equation of motion:

dkz

dt
=

evFH

�c0
.

In real space, this leads to a periodic open orbit along the a
axis with a c-axis velocity component vc=2tcc /� sin�kzc�
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=2tcc /� sin�evFHc /�c0t�. The electron motion is, then, pe-
riodically extended along the a direction with a spatial
modulation at the magnetic wavelength �=�c0 /eHc but is
localized along the c axis with a width of Az=4tcc0 /evFH.
The amplitude of the real-space orbit is then decreased as the
magnetic field increases, making the conductivity more 2D
and reducing the effective dimensionality of the system.
Eventually, the carriers become confined in the �ab� plane
once Az�c, namely, if �c�4tc. As a consequence, the sys-
tem undergoes a 3D-2D crossover inducing a metal-insulator
transition in the temperature dependence of the c-axis resis-
tivity, while the transport properties along the a and the b
directions remain metallic.

This field-induced confinement should not be confused
with the field-induced localization, for which the metal-
insulator transition is expected to occur in both directions
perpendicular to the field.

We have proposed a quantum-mechanical treatment to ac-
count for the temperature dependence of the c-axis resistivity
in �TMTSF�2ClO4 under the magnetic field H �b.11 The
model was substantially dependent on the in-plane electron
scattering rate � /�, which was derived within a Fermi-liquid
�FL� description with a T2 temperature-dependence law.
However, a major physical question regarding the field-
induced confinement could be the following: “Does the FL
description stand out when the dimensionality of the system
is reduced by the 3D-2D crossover?” Actually, there is a
long-standing controversy on the validity of a FL approach
for the transport properties in Bechgaard salts.13

The aim of this paper is to extend the model discussed in
Ref. 11 by going beyond the FL assumption to derive the
temperature and the field dependence of the relaxation rate,
from which we deduce the quantum-mechanical criterion for
the field-induced confinement. Moreover, we determine—
besides the c-axis resistivity—the magnetoresistance ��c /�0
�where ��c=�c�H�−�0 and �0 is the zero-field c-axis resis-
tivity�. We also calculate the a-axis resistivity �a and discuss
the obtained results in connection with the experimental data
of different Bechgaard salts. We shall argue that the present
model is actually consistent with the interplane transport be-
havior of layered conductors in the presence of an in-plane
magnetic field.

In the following we will briefly review the experimental
studies and the theoretical approaches dealing with inter-
plane transport under a magnetic field parallel to the inter-
mediate conducting b axis. Then, we will present our model
in Sec. III and discuss the obtained results in Sec. IV. Section
V is devoted to the concluding remarks.

II. FIELD-INDUCED CONFINEMENT: EXPERIMENTS
VERSUS THEORY

Forró et al.14 have reported the resistivity and the magne-
toresistance measurements along the c axis for a magnetic
field parallel to the triclinic b axis in the case of
�TMTSF�2ClO4 at low temperature �below 20 K� and
up to 7 T. The authors found that the magnetoresistance
obeys the Kohler rule �KR�, which states that the relative
variation of the resistance is a universal function of H /�0;

��/�0=mH2 /�0
2, where �0 is the zero-field resistivity and m

is a constant.
The study was extended by Cooper et al.8 to higher tem-

peratures for the ClO4 and the PF6 salts. The authors found
that the magnetoresistance in both salts obeys a T−3 power
law at high temperature �T	100 K�.

The dependence of the transport properties of
�TMTSF�2ClO4 on the disorder induced by irradiation and
alloying was studied by Korin-Hamzić et al.15 for a current
flow along the c axis and with a magnetic field parallel to b�
axis. The authors reported that the resistance increases as T2

increases up to 23 K for disordered samples at zero field and
that the KR is obeyed for pure and alloyed relaxed samples
in the temperature range from 4.2 to 30 K and fields up to
7.8 T. However, significant deviations from KR were ob-
served for irradiated samples. The result was interpreted as a
consequence of defect induced decrease in the effective
transverse hopping integral tc. This decrease is expected to
be erased by thermal fluctuations around 20 K as observed
experimentally.

Danner et al.10 measured the temperature dependence of
�c for H �b in �TMTSF�2ClO4 and found above 4 T—which
has been the lowest reported field value, a minimum of the
resistivity that is shifted toward higher temperature as the
field increases. The same feature was observed in PF6 salt by
Lee et al.16 above a critical field of 1 T.

Recently Korin-Hamzić et al.9 performed transport mea-
surements in the metallic state of �TMTSF�2ReO4 above
200 K and analyzed the temperature dependence of the mag-
netoresistance within FL and non-FL models. The authors
argued that the c-axis resistivity for H �b�, which does not
agree with Luttinger liquid predictions, cannot be fully un-
derstood within the conventional FL description due to the
lack of a FL transport theory including anisotropic relaxation
times. Moreover, the authors reported a quite interesting re-
sults about the temperature dependence of the magnetoresis-
tance, which exhibits at high temperature a T−3 behavior as
found in ClO4 and PF6 salts.

More recently, Joo et al.11 investigated, with accurately
aligned magnetic field and in the low-temperature regime,
the effect of a magnetic field oriented in the most conducting
�ab� plane of ClO4 compound. The results showed that for
H �b�, �c is marked by a field-induced confinement above 1 T
while the longitudinal resistivity �a remains metallic. When
the field is no more along b�, the authors found that the
confinement is induced by the field component along the b�
axis.

As regards to the theoretical studies, the field-induced di-
mensional crossover was first pointed out by Lebed17 when
discussing the reentrance of the superconducting phase in
organic conductors in high magnetic field parallel to the lay-
ers.

Strong et al.18 suggested that the magnetic field leads to a
renormalization of the coherent part of the interplane hop-
ping resulting in a coherence-incoherence transition from a
3D FL to decoupled 2D non-Fermi liquids. A magnetic field
applied in the b direction dephases the interplane tunneling,
which reduces the effective hopping integral tc. This idea
was originally proposed by Anderson to account for the un-
usual behavior of the interplane resistivity observed in cu-
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prate superconductors, which has been ascribed to the
non-FL nature of the in-plane electronic ground state. The
interplane coherent hopping is expected to be strongly re-
duced as a consequence of non-FL in-plane electronic
features.19 The model of Strong et al. was tested by Danner
and Chaikin20 in the case of �TMTSF�2PF6, which has been
argued to behave as a 2D non-FL above a threshold field as
predicted in Ref. 18. However, no quantitative conclusion
could be drawn out from the theoretical approach of Strong
et al. to account for the striking transport features of Bech-
gaard salts under a magnetic field parallel to the b axis.

A field-induced localization scenario was suggested to in-
terpret the large a-axis magnetoresistance observed for a
field parallel to the c axis in �TMTSF�2ClO4.12 This effect
was ascribed to the opening of a charge gap over the FS.
Nevertheless, the absence of any magnetoresistance along
the c axis rules out this localization model as argued by
Danner et al.10

A semiclassical calculation based on Boltzmann equation
was performed to drive an analytical expression for the out-
of-plane resistance in transverse magnetic field.21 The au-
thors found that the obtained expression, which depends on
two fitting parameters, is in agreement with experiments up
to 7 T. However, a strong discrepancy should be expected
between this model and the experimental data at high mag-
netic field for which the effective coherent hopping along the
out-of-plane direction is destroyed. On the other hand, semi-
classical models fail to explain the puzzling saturating be-
havior of the interplane resistance observed at low tempera-
ture and high magnetic field.22,23 We shall discuss this issue
in details in Sec. IV.

A quantum-mechanical approach was recently proposed
by Lebed24 to determine the electron wave function in quasi-
one layered conductors under a parallel magnetic field. The
author showed that, at high magnetic field, all the wave func-
tions are localized on one conducting layer contrary to the
weak-field limit where the wave functions can extend over
different layers. Lebed suggested to make use of this field-
induced 3D-2D crossover to test the existence of a FS in
different quasi-2D materials. Nevertheless, the striking be-
havior of the c-axis resistance was not addressed by the the-
oretical model of Ref. 24.

The outcome of this brief review is that the temperature
dependence of the resistivities in quasi-1D conductors under
a parallel magnetic field is a though theoretical issue, and
quantitative theoretical models are required. Basically, all the
proposed models assumed a field independent relaxation
time, which is inconsistent with the change from metallic to
insulating behavior of the c-axis resistance.

Recently, we have performed a quantum calculation of the
transverse transport in a parallel magnetic field taking into
account the field dependence of both the interplane electron
Green’s function and the intraplane scattering time. The lat-
ter was assumed to obey the T2 FL rule. The obtained results
are consistent with the behavior of the c-axis resistance as a
function of the temperature observed in the �TMTSF2ClO4�
salt.10,11 However, the FL nature of the relaxation time must
be taken with a grain of salt in the case of PF6 compound
where no clear conclusion can be drawn about the validity of
a FL description. In this paper, we extend discussions about

the theoretical results shortly presented in Ref. 11 and ad-
dress issues dealing with the electronic transport properties
in Bechgaard salts in the presence of a parallel magnetic
field. We assign the puzzling behavior of these properties to
two key ideas, which make the originality of our model: �i�
the confinement of the electron Green’s function to a single
layer and �ii� the temperature and the field dependences of
the in-plane scattering rate. The latter shows departure from
the T2 FL law. The obtained results are in good agreement
with the experimental data reported in numerous layered
conductors.

III. FIELD-INDUCED CONFINEMENT:
THEORETIC APPROACH

We consider, for simplicity, an orthorhombic crystal struc-
ture instead of the real triclinic one, which should not affect
the outcomes of the model. We denote, hereafter, the ortho-
rhombic �a ,b� ,c�� basis by �a ,b ,c�.

Within a tight-binding model, the dispersion relation of
quasi-one-dimensional conductors can be described by


�k�� = vF��kx� − kF� − 2tb cos kyb − 2tc cos kzc , �1�

where b and c are, respectively, the interchain and interplane
distances. We have taken a linear dispersion around the
Fermi level along the chains direction a corresponding to the
highest conductivity and with a Fermi velocity vF. tb stands
for the hopping integrals to the first-nearest neighbors in the
b direction, whereas tc describes the hopping along the least
conducting axis c perpendicular to the conducting plane
�a ,b�. The strong anisotropy of the hopping parameters leads
to an open two-sheet Fermi surface. It is worth to note that,
we have neglected in Eq. �1� the second-neighbor hopping
integral tb� along the b direction since it is irrelevant for the
physics of field-induced confinement.

Let us consider a magnetic field parallel to the b axis

H� �0,H ,0� with the gauge A� �0,0 ,−Hx�. The equation of mo-
tion near the right-hand FS sheet is

�i�n + ivF
d

dx
− 2tb cos kyb − 2tc cos�kz +

eHx

c
�c	

�g++�i�n,ky,kz,x,x�� = ��x − x�� , �2�

where g++�i�n ,ky ,kz ,x ,x�� is given by

g++�i�n,ky,kz,x,x�� = e−ikF�x−x��G++�i�n,ky,kz,x,x�� .

Equation �2� is obtained within a mean-field theory by means

of Peierls substitution p� →p� − e
cA� . The Green’s function is

written in the mixed representation �ky ,kz ,x�, which is more
convenient for the present problem.3 Equation �2� can be
immediately integrated in the form;
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G++�i�n,ky,kz,x,x�� =
sign �n

ivF
exp i� i�n�x − x��

vF
+ kF�x − x�� −

2tb

vF
cos�kyb��x − x��

−
4tc

�c
cos
kz +

Gc�x + x��
2

�sin
Gc�x − x��
2

�	 , �3�

for �n�x−x��	0, where Gc=eHc /c0 is the magnetic wave vector and �c=vFGc is the magnetic energy. Taking for Bechgaard
salts7 vF=2105 m.s−1, c�14 Å gives rise to �c /H=3.3 K /T.

We substitute the Matsubara frequencies �n by �T ,H�− i�—where the scattering rate �T ,H�=� /��T ,H�—and ��T ,H� is
the in-plane quasiparticle lifetime, which is temperature and field dependents. We obtain, by taking the Fourier transform of
G++�i�n ,ky ,kz ,x ,x�� with respect to kz,

G++��,ky,z,E� =
sgn �

2i�cvF
exp�− �T,H�

E
	exp i��

E
+

EF

E
−

2tb

E
cos kyb	�

−�

�

exp i� z�

c
−

4tc

�c
cos � sin� �c

2E
�	d� . �4�

In Eq. �4� we have set E=vF / �x−x��, �=ckz, and X0= �x
+x�� /2=0, since the behavior of the Green’s function is not
affected by the position of the center of mass X0.

To derive the z dependence of G++�� ,ky ,z ,E�, one should
write down the expression of the scattering rate
�T ,H�—which is expected to be substantially dependent on
the magnetic field. This is due to the localization of the elec-
tron density in a narrower distance along the c axis as the
magnetic field increases, which results in an enhanced in-
plane scattering rate =� /�. However, above a threshold
field at which the system undergoes a 3D-2D crossover, 
tends to saturate since all the electrons are confined in one
conducting plane. Lebed25 has already highlighted the crucial
effect of the magnetic field on the temperature dependence of
the scattering rate. The latter is found to change with field
orientation governing the effective dimensionality of the sys-
tem.

Moreover, Zheleznyak and Yakovenko7 have found—
based on numerical calculations—that under a magnetic filed
the temperature behavior of the Umklapp electron-electron
scattering changes from T2 to T if the temperature is smaller
than the magnetic energy. According to Refs. 7 and 25, the
in-plane scattering rate is expected to be field dependent.

�T ,H� is given by the imaginary part of the self-energy
of the electron Green’s function:26

�T,H� = �g2vFT�
0

�

dq�
0

�

dQ�
0

Ed�T� dE

E2

2�T

sinh2� 2�T
E �

� 
 2�T

E�exp4�T/E − 1�
+

2�T − E

2E
�J0

2�8tb

E
cos q�

� J0
2
8tc

�c
sin��c

E
�cos Q� , �5�

where g is the strength of the electron-electron interaction
and Ed�T� is a temperature-dependent cutoff. The latter is a
renormalized bandwidth depending on the effective dimen-
sionality of the system. One should expect, as in renormal-
ization group method,27 different bandwidth cutoffs as the
system crosses from a given dimension to the other. In a
renormalized mean-field theory, the bandwidth for the 2D

phase of Q1D organic conductors is taken as Tcross instead of
EF�3000 K. Tcross� tb is the temperature at which the sys-
tem undergoes a dimensional crossover from the 2D phase to
the purely one-dimensional �1D� phase.27

As argued by many authors,7,9,25 the switching from a
fully 3D to a 2D behavior has dramatic effects on the in-
plane scattering rate. Regarding the strong dependence of the
dimensionality of the system on the thermal fluctuations,
electron-electron scattering processes should then be signifi-
cantly dependent on the thermal energy scales—which define
the different regimes of thermal fluctuations. Crossing from
one regime to the other, the temperature behavior of the scat-
tering time is expected to change �reflecting the interplay
between dimensionality and thermal fluctuations�. Each ther-
mal regime can be identified by an energy scale Ed�T�, which
marks its extent. Only scattering processes with an energy E
Eq. �5�� less than the cut-off Ed�T� can take place in a given
phase. Higher-energy processes will occur in a reduced di-
mension phase with a higher cutoff.

Referring to the interplane hopping parameter tc, one
could distinguish basically three energy scales for the cut-off
Ed�T�: �i� T3D� tc, below which a coherent interplane hop-
ping takes place leading to a conventional 3D FL. �ii�
T3D-2D�tc�T3D−2D� tb�, which marks the extent of the tran-
sient regime where the system crosses continuously from the
3D to the 2D phase. The interplane hopping, in this regime,
becomes more and more incoherent as the temperature in-
creases. �iii� T2D� tb which indicates the crossover tempera-
ture from the 1D to the 2D phase. Below T2D but above
T3D-2D, the system is effectively 2D and the hopping along
the c axis is completely destroyed.

We have considered, for a given temperature, the corre-
sponding energy cutoff Ed�T� to derive the temperature de-
pendence of the scattering rate �T ,H� according to Eq. �5�.

Taking a unique infinite cutoff—as done in Ref. 26—
leads to a field independent scattering rate, which is incon-
sistent with the field-induced metallic-insulating switching of
the �c temperature dependence and with the change in the
temperature behavior of the scattering rate with field orien-
tation reported in Ref. 25.

The temperature behavior of �T ,H� given by Eq. �5� is
depicted in Fig. 1. The numerical values of the different pa-

HADDAD et al. PHYSICAL REVIEW B 78, 075104 �2008�

075104-4



rameters used in Eq. �5� are given in the caption. It is worth
to note that the field-induced confinement scenario depends
on tc value and not on tb, which is still controversial in Q1D
organic conductors. The renormalized bandwidth Ed�T�
depends on the effective dimensionality of the system. In
the 3D phase, �a� Ed�T�� tc while in the transient regime
separating the 3D phase from the purely 2D phase �b�
tc�Ed�T�� tb. In the 2D phase, Ed�T�� tb.

Figure 1 shows a clear deviation from the T2 FL law at
high temperature �T	 tc�. This law is expected to be obeyed
when the c-axis hopping is coherent, which is the case of the
low-temperature 3D phase where thermal fluctuations are
small compared to tc Fig. 1�a��.

On the other hand, Fig. 1 shows that the effect of the
magnetic field is strongly enhanced as the temperature de-
creases, namely, when the thermal fluctuations are reduced
compared to the magnetic energy �c. At high temperature,
�T ,H� is practically field independent since the system is
already in a 2D state resulting from a 3D-2D thermal in-
duced crossover.

A remarkable feature of the scattering rate �T ,H� is its
dependence on the magnetic field, which is expected to ex-
hibit different behaviors depending on the field magnitude.
This is a consequence of the competition between the three
energy scales governing the field dependent term in Eq. �5�,
namely: the interlayer hopping integral tc, the magnetic en-
ergy �c, and the energy E, which strongly depends on tem-
perature via the cut-off Ed�T�. The behavior of �T ,H� as a
function of the field should then be marked by three regimes:
the first one corresponding to the low-field values ��c� tc�
where the electron wave function can overlap several layers
leading to a nearly field independent scattering rate. The sec-
ond regime starts as soon as the magnetic energy overcomes
tc, which is achieved above a threshold field H1

�. The decou-
pling of the conducting layers is more and more efficient as
the field increases, which results in the confinement of the
electrons within a single layer. This gives rise to a substan-
tially enhanced in-plane electron-electron scattering rate with
a remarkably large slope compared to that obtained at low
field. The third regime is reached at a critical field H2

�, above
which the layers are completely decoupled. The increase in
�T ,H� is then expected to slowed down with increasing
magnetic field. These features are brought out in Fig. 2
where the three regimes can be clearly distinguished. At low
magnetic field, where the magnetic energy is smaller than tc,
�T ,H� increases slowly with increasing magnetic field re-
flecting that the system is still in the 3D phase. Above the
critical field H1

�, the slope of �T ,H� is strongly enhanced
indicating the sharp localization of the electron density in the
most conducting plane. H1

� marks the beginning of the
3D-2D crossover. However, �T ,H� tends to saturate beyond
the critical field H2

�, which is the signature of the establish-
ment of the 2D phase where all the electrons are confined in
the �ab� plane. The field range from H1

� to H2
� is the transient

regime where the dimensional crossover takes place. Figure
2 shows that, below a temperature of the order of tc, H2

�

decreases with increasing temperature—which expresses the
competition between the magnetic field and the thermal fluc-
tuations whose effect is to drop the system into the 2D phase.
Nevertheless, H1

� is practically temperature independent
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FIG. 1. The calculated scattering rate �T ,H� versus T2 derived
from Eq. �5� for different field values �a� in the low-temperature
regime �T� tc�, �b� in the intermediate regime �T� tc�, and �c� in
the high-temperature regime �T	 tc�. �a� At low temperature, the T2

FL law is obeyed, while �b� and �c�� at high temperature �T	 tc�,
the curves can be fitted by Tn with n�2. The calculations are done

considering tc=10 K, tb=200 K, and �a� Ed�T�� tc, �b� Ed�T��
tb

2 ,
and �c� Ed�T�� tb. Taking for Bechgaard salts �Ref. 7� vF

=2105 m s−1, c�14 Å gives rise to �c /H=3.3 K /T.
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since it is the threshold field at which the magnetic energy
bypasses the interplane hopping. As a result, the transient
regime �limited by the two critical fields� shrinks as the tem-
perature increases indicating the enhancement of the ther-
mally induced 2D character of the system. Eventually, the
field-induced confinement is erased at high temperature �T
�3tc� since the system is already in the 2D phase. Figure 2
can be taken as a criterion of the field-induced confinement.

Knowing the temperature and field dependence of the
scattering rate, the z dependence of the Green’s function can
be straightforwardly obtained from Eq. �4�. Figure 3 shows
the amplitude of the Green’s function versus the interplane
distance. As the magnetic field increases, the electron
Green’s function gets more and more confined. At a field of
1 T, the electrons are localized between the z=−2 and the z
=2 planes. By increasing the magnetic field, the amplitude of
the Green’s function displays a large peak around the z=0
plane. This peak is entirely centered at z=0 at 15 T leading
to a 3D-2D crossover.

To account for the striking transport features of the Bech-
gaard salts, we have derived �based on the Kubo formula� the
interlayer and the a-axis conductivities, respectively, �c and
�a which are substantially dependent on the scattering rate
�T ,H�� �Refs. 28 and 29�:

�i =
e2�

�
� dky� dkz� dEvi

2� d


2�
2 Im GR�ky,kz,E,
��2

� − nF��
�� , �6�

where GR�ky ,kz ,E ,
� is the retarded Green’s function de-
duced from Eq. �3� by substituting the Matsubara frequencies
�n by �T ,H�− i� �where �=
�. The setting E=vF / �x−x��,

� is a normalization factor, nF��
� is the derivative of the
Fermi distribution function, and vi=�
�k� ,�c� /��ki is the
electron velocity in the i direction �i=x ,z�.

It is worth to stress that vz is field dependent since the
dispersion component along the c axis is field renormalized.
The latter is deduced from the Hamiltonian written in the

gauge A� = �0,0 ,−Hx�—which gives rise, in the equation of
motion Eq. �2��, to the field dependent term3 −2tc cos�kzc
+ eHxc

c0
� instead of the zero term −2tc cos kzc. However, vx is

nothing but the Fermi velocity vF since the a-axis dispersion
is not affected by a magnetic field parallel to the b direction
as far as the magnetic energy �c is smaller than the intrac-
hain hopping integral ta�2000 K. The conductivity �i de-
pends on the magnetic field through the velocity vi, the
Green’s function GR, and the scattering rate , which is in-
volved in the expression of the GR Eq. �3��.

Disregarding the self-energy corrections represented by
the scattering rate �T ,H� Eq. �5��, Eq. �6� can be reduced
by straightforward calculations to the semiclassical Cham-
bers formula.21,29,30 The latter gives for the interplane resis-
tivity under a parallel magnetic field �H �b�;

�c�H,T� =
A

�
�1 + �c

2�2� . �7�

Here � is the scattering time and A is a constant.
In the next section, we discuss under close scrutiny the

signature of the field-induced confinement in the transport
properties of quasi-1D organic conductors.

IV. RESULTS AND DISCUSSION

In Fig. 4�a� we have depicted the temperature dependence
of the calculated c-axis resistivity �c=1 /�c Eq. �6�� for dif-
ferent values of the magnetic fields. Below a threshold field
H��1 T, the system remains metallic over the whole tem-
perature range that goes down to 2 K to avoid the effect of

0 5 10 15 20

H (T)

1

1,5

2

2,5

3

η
(H

)
/η

(
H

=
1T

)

T= 5 K
T = 10 K
T = 30 K

0 5 10 15 20

H (T)

820

840

860

880

900
η

(a
rb

.u
ni

ts
) T = 5 K

1.5

2.5

FIG. 2. Field dependence of the scattering rate �T ,H� normal-
ized to its value at 1 T derived from Eq. �5� for different tempera-
tures. The symbols are the calculated values at 1, 1.5, 3, 5, 9, 14, 17,
and 20 T for which we shall calculate, in the next, the resistivities.
The lines joining the symbols are guide for eye. The inset shows the
field dependence of the scattering rate at 5 K deduced from Eq. �5�.
H1

� �thin line arrows� marks the onset of the 3D-2D crossover, while
H2

� �thick line arrows� is the signature of the collapse of the inter-
plane electron hopping. For the numerical values of the different
parameters used in Eq. �5�, see Fig. 1.
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superconducting fluctuations �which are expected to be en-
hanced below this temperature�. However, beyond H�, �c
switches from a metallic to an insulating behavior as T is
decreased. This crossover occurs at a temperature Tmin,
which increases with increasing magnetic field.

To confirm this field-induced 3D-2D crossover, we have
represented the temperature dependence of the calculated
a-axis resistivity in Fig. 4�b� �which clearly shows the ab-
sence of any confinement even at high magnetic field�. The
transport along the most conducting axis remains metallic. It
is worth to note that, actually, the resistivity �a is slightly
increased by increasing magnetic field reflecting the fact that
the in-plane scattering rate �T ,H� is enhanced by confine-
ment.

To highlight the crucial role of the scattering rate on the
interplane transport, we show in Fig. 5 the calculated c-axis
resistivity �c derived from Eq. �6� assuming a field indepen-
dent scattering rate with a T2 FL temperature dependence. In

Fig. 5 no change in the temperature dependence of �c occurs
up to 9 T and a very high magnetic field is needed to induce
the field-induced confinement. The latter is expected from
experimental data to take place above a threshold a of the
order of 1 T �Refs. 11 and 16� as shown in Fig. 4�a�. It is
clear from Fig. 5 that the field dependence of the scattering
rate is a keystone in the field-induced confinement scenario.

Figure 6 shows clearly that the T2 FL law—obeyed by the
c-axis resistivity at zero field—is also satisfied at high tem-
perature �above 40 K� even at high field �up to 20 T�, which
is reminiscent of the experimental data.9,10 Such result seems
to be peculiar since the relaxation rate  does not obey, in the
high temperature regime, a T2 law as it is expected for a FL
�Fig. 1�. This expresses the fact that the transport FL prop-
erties are robust against field-induced confinement when the
thermal fluctuations overcome the magnetic energy.

In order to bring out the effect of the magnetic field on the
c-axis transport, we plot in Fig. 7 the calculated resistivity �c
Eq. �6�� versus the magnetic field for different temperatures.
In the low-temperature regime corresponding to the 3D
phase �T� tc�10 K�, a clear change in the behavior of �c
occurs at a critical field Hc�5 T for which the magnetic-
field energy is of the order of 2tc. The system switches from
a H2 behavior to a Hn �n�1.7� indicating a crossover from
the 3D to the 2D phase. By increasing temperature, the
abrupt change at Hc vanishes and �c shows a rather monoto-
nous increase. However, at high temperature, a field indepen-
dent behavior can be reached, which is readily understood as
the erasing of the magnetic effect in the 2D phase established
by thermal fluctuations. This behavior is reminiscent of the
magnetic-field dependence of the c-axis resistivity reported
in YBa2Cu4O8 and PrBa2Cu4O8.31,32 The former is an under-
doped cuprate with a metalliclike c-axis response at low tem-
perature and the latter—obtained by Pr substitution of Y and
which is also metallic—is thought to be a 3D FL at low
temperature, albeit the presence of strong electronic correla-
tions. We suggest that the remarkable features of these com-
pounds, which are still not understood, could be correctly
interpreted within the framework of the present model. A
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detailed theoretical analysis and a quantitative comparison
with the experimental results of Refs. 31 and 32 will be
discussed elsewhere.

A substantially noteworthy experimental result concerns
the saturation, at low temperature, of the interlayer resistance
Rc under high magnetic field aligned along the b axis.22,23 A

more striking feature is that this behavior is found to be
independent of the field orientation in the �ab� plane. These
puzzling results cannot be understood within the existing
theories. In particular, the semiclassical Boltzmann theory
Eq. �7�� predicts a nonsaturating behavior.22 In Fig. 8 we
report the field dependence of our calculated c-axis resistiv-
ity �c at low temperature �solid line� compared to the experi-
mental results of Ref. 10 obtained in the case of
�TMTSF�2ClO4 salt. The calculated �c is in quantitative
agreement with the experimental data contrary to the semi-
classical result. In particular, the latter does not exhibit any
saturating behavior. We found that �c shows an initial rapid
rise followed by a nearly field independent behavior. This is
reminiscent of the magnetoresistance measurements in the
�TMTSF�2PF6.22 This saturation can be viewed as a conse-
quence of the field dependence of the in-plane relaxation
rate. In the considered field regime, the magnetic energy �c
is not sufficiently large to induce a decoupling of the 2D
layers. Therefore, at low temperature, the electron wave
function can overlap many layers and the in-plane relaxation
rate remains nearly field independent as far as �c� tc �Fig.
2�. This leads to a saturating c-axis resistance, which can be
taken as �c��T ,H�.17 The low-temperature condition is
necessary to obtain the saturation behavior since the inter-
layer tunneling, and so the 3D character, are enhanced by
decreasing temperature. We then suggest that the saturating
resistance of Q1D organic conductors at low temperature is
closely related to the nearly field independent behavior of the
in-plane relaxation rate �inset of Fig. 8�. Let us now turn to
the role of the in-plane field orientation in the saturation of
the interlayer resistance—which is found to be insensitive to
the rotation of the field in the �ab� plane—except the posi-
tion along the most conducting axis.23

Once again, we assign this striking behavior to the field
dependence of the electron-electron scattering rate , which
is basically sensitive to the in-plane field component along
the b axis. The latter, whatever the field orientation, cannot
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decouple the 2D layers as far as the threshold field H1
� is not

reached. In this field regime, corresponding to the experi-
mental conditions of Ref. 23, the calculated scattering rate
and the interlayer resistance are expected to be unaffected by
the rotation of the field in the layer �Fig. 8� in accordance
with recent experimental results.23

It is worth to stress that our results �shown in Fig. 8� may
be interpreted in terms of the semiclassical description by
taking a field dependent relaxation time �=1 / of the Cham-
bers formula Eq. �7��.

As shown in the inset of Fig. 8, the relaxation rate  is
constant for H	6 T—which leads, according to Eq. �7�, to
an increasing resistance as the magnetic field increases.

For H	6 T,  is enhanced since the magnetic energy �c
bypasses the interlayer hopping integral tc. As a result, the
increase in �c with increasing field is slowed down due to
the decrease of � giving rise to a saturating resistance Eq.
�7��. Nevertheless, for higher-field values �H	12 T�—for
which the system is effectively 2D system—the increase in �
can no more compensate the enhancement of �c. As a con-
sequence, the saturating regime disappears and the increase
in �c resumes again. However, this interpretation raises the
question of whether the Chambers formula Eq. �7��—
derived with a constant relaxation time—holds on if the lat-
ter is field dependent? This point should be taken with a
grain of salt.

More insight into the field-induced confinement can be
learned from the temperature and the field dependence of the
magnetoresistance ��c /�0. Figure 9 shows a change in the
power-law behavior of the temperature dependence of the
calculated magnetoresistance, which is smeared out as the
magnetic field increases �solid lines in Fig. 9�. At high tem-
perature �T	 tc� and beyond a threshold field of 5 T, at which
the system is effectively 2D, the magnetoresistance exhibits
a T−2.6 behavior in accordance with the experimental data of
Cooper et al.8 �triangles�. This behavior turns out to be a
universal T−3 power law at high temperature as found by
Hamzić et al.9 for different Bechgaard salts �filled circles�.

The field dependence of the magnetoresistance is dis-
played in the form of Kohler’s plot in Fig. 10. The dashed
line corresponds to the expected theoretical curve with a
slope one since �according to KR� �� /�0=mH2 /�0

2 Eq. �7��.
It is worth to note that the data points in Fig. 10 cannot form
a unique straight line since they correspond to different tem-
perature and field regimes, which rules out the possibility to
describe them with the same law. However, one may gather
these data in three straight lines—indicated by �1�, �2�, and
�3� in the figure with, respectively, the slopes 0.45, 0.9, and
0.75. Three regimes can then be distinguished. In the first
one, corresponding to the data of line �1� associated to the
high temperatures �T	 tc� and low field ��c� tc�, strong de-
viations from the KR are observed slope of line �1� is
clearly different from 1�. In this regime, the system is effec-
tively 2D due to thermal fluctuations. The latter destroys the
interlayer hopping leading to a departure from KR, which is
expected to hold on according to Hamzić et al.15 if the hop-
ping is still coherent. The deviation from KR is ascribed to
the reduction in the effective value of tc.

15 In the second
regime, which concerns the low temperatures �T� tc� and
low fields ��c� tc�, the KR is recovered slope of line �2�
�1�. In this case, the system is effectively 3D since the
c-axis hopping is not destroyed by thermal fluctuations and
field-induced confinement. By increasing the magnetic field,
the data—corresponding to the low-temperature regime line
�3��—show small deviations from KR as soon as the field
bypasses the value at which the field-induced confinement
takes place at the considered temperature. This regime cor-
responds to the transient phase �H1

��H�H2
�� where the di-

mensional crossover takes place with a reduced interplane
hopping integral.

These results sound in agreement with the magnetoresis-
tance measurements of Refs. 14 and 15 in the limit of low
field.
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The outcome of this discussion is that KR is satisfied if
the system is effectively 3D where the c-axis hopping is not
destroyed by either field-induced confinement or thermal
fluctuations.

V. CONCLUSION

In summary, we suggest that the striking behavior of the
c-axis electronic transport results from the field-induced di-
mensional crossover, which we have described within a
quantum calculation. We showed that the magnetic field ap-
plied along the intermediate conducting axis brings the sys-
tem to an effective 2D phase by localizing the electron
Green’s function within a single conducting plane. Such di-
mensional switching has dramatic effects on the in-plane re-
laxation rate. The latter, which we have derived as a function
of temperature and magnetic field, exhibits departure from

the T2 FL law. However, the c-axis resistivity still obeys a FL
behavior at high temperature—which means that the FL is
robust in quasi-1D conductors even if the relaxation rate
does not match the FL law. This is an original issue, which
has not been addressed so far. We expect that our model,
which provides a coherent interpretation of the experimental
results in Bechgaard slats, may be a reliable framework to
account for the peculiar features reported in some cuprate
based compounds in high magnetic fields.
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